Robotereinsatz in der Solartechnik

Automatisierte Inspektion

Robotereinsatz erhöhnt den Durchsatz in der Solarzellenproduktion
Der Einsatz eines Bildverarbeitungssystems in Verbindung mit einem Roboter verbessert die Prozessausbeute, weil die Wafer direkt im Produktionsprozess recycelt werden können.
Obwohl die Nachfrage nach Solarprodukten rasant steigt, ist die Herstellung von Strom mit Solarzellen noch immer teurer als die Stromproduktion mit fossilen Brennstoffen. Allerdings rückt die sehnsüchtig erwartetet Grid Parity nicht zuletzt dank immer wirtschaftlicherer Produktionsmethoden allmählich näher. Die Photovoltaik-Hersteller stehen unter enormem Kosten- und Innovationsdruck. Nur wer die neuesten Technologien umsetzt, kann am Markt bestehen.

Wie in vielen anderen Bereichen auch, ist der Trend zur Automatisierung in der Photovoltaikindustrie nicht mehr aufzuhalten. „Die Automatisierungstechnik ermöglicht es den Herstellern, die Erträge zu steigern und Kosten zu senken. Außerdem produzieren Solarhersteller in größeren Betriebsstätten, so dass eine Automatisierung heute unumgänglich ist“, sagt Joachim Melis, Geschäftsführer von Adept Technology.

Das Unternehmen arbeitet mit verschiedenen Solarzellen-Herstellern zusammen. Das Zusammenspiel eines Adept-Quattro 650H-Roboters mit der Bildverarbeitung Adeptsight ermöglicht es den Herstellern, verschiedene Schritte im Herstellungsprozess zu automatisieren. Im Folgenden werden anhand verschiedener Produktionsschritte die Möglichkeiten der Automatisierung aufgezeigt.

Anzeige

Das automatisierte Inspektionssystem setzt im vorletzten Schritt des Herstellungsprozesses von Solarzellen ein. Die Siliziumscheiben haben bereits mehrere Dünnschicht-Beschichtungsverfahren durchlaufen, damit deren Wirkungsgrad beim Umwandeln von Sonnenlicht in elektrische Energie möglichst hoch ist. Beim Drucken wird ein Raster von Elektroden mit leitfähiger Tinte aufgebracht. In dieser Phase zahlt es sich aus, das Raster zu untersuchen und die Wafer, die Druckfehler aufweisen, zu recyceln und das Raster neu aufzubringen. Gleichzeitig können Risse, Verunreinigungen und andere Mängel im Wafer ermittelt werden. Dazu wird das Robtotersystem zwischen der Siebdruckstation und dem Brennofen für den Elektrodendruck installiert. Die Wafer können sich während der Inspektion ungehindert auf dem Transportband bewegen. Die verwendete hochauflösende Kamera ist an den Bildverarbeitungscontroller Smart-Vision EX von Adept angeschlossen, einem PC-basierten Bildverarbeitungscontroller, auf dem die Adept-Bildverarbeitungssoftware Adeptsight ausgeführt wird. Diese enthält alle notwendigen Algorithmen für die Inspektionsanwendungen und führt gleichzeitig den Roboter auf der Suche nach einzelnen Wafern.

Die zweifachen Anforderungen – automatisierte Inspektion und Roboterführung – erfordern zwei verschiedene, auf das gleiche Bild angewendete Analysealgorithmen. Wenn sich der Wafer mit dem Transportband bewegt, wird ein Bild mit der Kamera aufgenommen und über die Gig-E-Verbindung in den Bildverarbeitungscontroller hochgeladen. Das Schwellenwertverfahren und die Konturenerkennung heben die Kontur des Wafers sowie die Siebdruckelektroden hervor. Die Inspektionsaufgaben des Robotersystems können in drei Bereiche unterteilt werden: Druckinspektion, Inspektion auf Abplatzungen und Rastererkennung.

Die Druckinspektion gewährleistet, dass die Elektrodenkanten glatt sind, das richtige Raster bilden und einwandfrei mit den Waferkanten ausgerichtet sind. Die Inspektion auf Abplatzungen stellt sicher, dass die Waferkontur nicht von der korrekten Größe und Form abweicht. Und die Algorithmen zur Rastererkennung suchen nach allem, was ungewöhnlich ist – beispielsweise Risse oder unterbrochene Tintenlinien. Lineare Messalgorithmen überprüfen die einwandfreie Positionierung des Tintenrasters, das vorhanden sein sollte.

Der Roboter muss bei der Inspektion mit der Kamera genau erkennen, wie die Wafer auf dem Band liegen. Das integrierte Bildverarbeitungsprogramm Adeptsight ermittelt die exakte Ausrichtung des Wafers. Der Adept-Smartcontroller setzt diese Informationen via Fire-Wire-Schnittstelle in ein gedrehtes Koordinatensystem um, das mit den Kanten des Wafers ausgerichtet ist.

Der Controller des Bildverarbeitungsprogramms klassifiziert die Zellen und sortiert die ausgemusterten Wafer in verschiedene Behälter. Es gibt Wafer, die gereinigt und wiederverwertet werden können und Wafer, die verschiedene, nicht korrigierbare Mängel aufweisen, wie abgeplatzte Kanten und Ränder sowie Risse. Die Wafer-Handling-Station, die nach der Inspektion folgt, verwendet einen Adept Quattro-Roboter und stimmt sich mit dem Bildverarbeitungssystem ab, um sowohl die Inspektion als auch das Handling der Wafer zu automatisieren. Der Adept Quattro s650H ist ein Roboter mit neuartiger Kinematik, die speziell für High-Speed-Verpackung und Materialhandling entwickelt wurde. Er ist weltweit der einzige Roboter mit Vier-Arm-Design und erreicht so eine extrem hohe Geschwindigkeit und Beschleunigung über den gesamten Arbeitsbereich.

Der rotierende Freiheitsgrad wird durch Schultergelenke in der Basiseinheit ermöglicht, durch die die vier Arme des Roboters relativ zueinander bewegt werden können. Als weitere Abweichung von der herkömmlichen Praxis bei der Materialhandhabung durch Roboter verwendet die Konstruktion von Adept anstelle der üblichen Sauggreif-Technologie eine sanftere Methode zum Aufnehmen und Bewegen von Wafern – basierend auf dem Bernoulli-Prinzip. Bei Sauggreifern wird ein Vakuum erzeugt, um den Wafer an einen Elastomer-Saugnapf anzusaugen. Die Reibung zwischen den Saugnapflippen und dem Wafer erzeugt dann die Kraft, die zum Bewegen des Wafers erforderlich ist.

Das Bernoulli-Prinzip zeigt hingegen, wie man den positiven Luftdruck nutzen kann, um einen Wafer eng an eine flache Platte anzusaugen, ohne dass dieser dabei aber die Platte berührt. Die Strömungsgeschwindigkeit der Luft, die durch eine enge Spalte zwischen den Greifplatten und dem Wafer strömen muss, muss sich erhöhen, damit die Luft entweichen kann. Außerhalb des Spalts verringert sich die Strömungsgeschwindigkeit der Luft bis auf null. Demnach muss der Luftdruck in dem Spalt viel niedriger sein als der Umgebungsdruck. Sauggreifer verursachen eine punktuelle Belastung um die Ansaugöffnung herum, wohingegen die Bernoulli-Greifer die Belastung auf die ganze Greifplatte verteilen. Dieses Phänomen verringert wesentlich den maximalen Belastungsgrad im Wafer und folglich das Auftreten nachfolgender Brüche.

Die Vorteile einer automatisierten Inspektion sind vielfältig. „In der Vergangenheit verließen sich Hersteller bei der Qualitätssicherung auf die manuelle Inspektion ihrer Mitarbeiter. In verschiedenen Arbeitsschritten waren es mehrere Personen, die die Wafer überprüft haben“, so Uwe Siekmann, Applikationsingenieur bei Adept Technology. Während eine manuelle Inspektion nicht immer einheitliche Ergebnisse liefert, ermöglicht eine automatisierte Inspektion mit Roboter und Bildverarbeitung eine bessere Qualität bei einer höheren Geschwindigkeit und gleichzeitiger Reduzierung der Material- und Fixkosten.

Rüdiger Winter/ff

Anzeige

Das könnte Sie auch interessieren

Anzeige

Roboter

Unabhängige Arme

Die Roboter der Duaro-Serie von Kawasaki sind keine gewöhnlichen Scara-Roboter. Durch Ihre Zwei-Arm-Struktur können sie echte, voneinander unabhängige Zwei-Arm-Tätigkeiten übernehmen, die bislang nur von Menschen durchgeführt werden konnten.

mehr...
Anzeige
Anzeige
Zur Startseite