Bildverarbeitung für die 3D-Darstellung von Kurbelwellen

Prüfung in der Datenbank

Bildverarbeitung für die 3D-Darstellung von Kurbelwellen. Ein in Frankreich entwickeltes bildverarbeitungsgestütztes System setzt für die Auswuchtung von Kurbelwellen neue Maßstäbe. In nur 37 Sekunden wird mit der Methode von Videometric ein digitalisiertes 3D-Modell einer Kurbelwelle erstellt.

Kurbelwellen, wie sie in der Automobilindustrie verwendet werden, wandeln die lineare Hubbewegung der Motorkolben in eine Drehbewegung um und leiten diese an das Getriebe weiter. Schon eine geringe Unwucht, die durch Fertigungsschwankungen entstehen kann, führt bei steigender Drehzahl zu Lagerbelastungen und Vibrationen. Deswegen ist eine Auswuchtung erforderlich. Dazu werden die Kurbelwellen auf eine hohe Rotationsgeschwindigkeit gebracht. Mithilfe der dabei entstehenden Vibrationen wird die überschüssige Masse entlang ihrer Achse bestimmt, um festzulegen, an welchen Stellen Materialüberschüsse später durch Bohren oder Fräsen entfernt werden müssen. „Diese traditionellen Messsysteme können durch die Nutzung von 3D-Bildverarbeitungstools erheblich verbessert werden“, erklärt Olivier Bommart, Vertriebsmanager bei Videometric. Seit mehreren Jahren entwickelt das auf 3D-Vision-Systeme spezialisierte Unternehmen Lösungen für den Automotive-Bereich. Mehrere Monate arbeiteten die französischen 3D-Spezialisten im Forschungslabor an einer neuen Auswuchtmethode für Kurbelwellen. Im Mittelpunkt stand der Digitalisierungsprozess. Dieser musste so ausgelegt sein, dass auch komplexe Kurbelwellen innerhalb des aktuellen Industriestandards in 45 Sekunden zu 100 Prozent digitalisiert und ausgewertet sind. Gleichzeitig sollten mit der neuen Methode auch die Schwachpunkte der traditionellen Systeme behoben werden. „Bei den herkömmlichen Systemen können Bearbeitungsschritte notwendig sein ohne die Sicherheit, dass die Kurbelwelle am Ende perfekt ausgewuchtet ist. Im schlimmsten Fall steht nach dem Bearbeitungsprozess eine noch immer schlecht ausgewuchtete Kurbelwelle, die nur verschrottet werden kann, weil Teiledefekte nicht frühzeitig genug erkannt wurden“, erläutert Bommart.

Anzeige

In 37 Sekunden ein komplettes 3D-Modell

Die von Videometric entwickelte Methode wird derzeit auf einem bildverarbeitungsgestützten GigE-System, das unter anderem aus 32 Industriekameras, 16 LED-Beamern und mehreren Computern besteht, realisiert. Es digitalisiert eine Kurbelwelle hochpräzise in nur 37 Sekunden. Dazu ist ein Set aus je acht versetzt montierten Karbonfaserarmen auf die Oberfläche der Kurbelwellen ausgerichtet. An jedem Arm sind ein LED-Beamer und zwei digitale VGA-Kameras der TX-Serie von Baumer befestigt. Durch die sequenzielle Ansteuerung der Beamer wird ein alternierendes, sinusförmiges Streifenmuster aus nicht-kohärentem Licht mit variierender Intensität auf die Kurbelwellenoberfläche projiziert. Die Sequenz der verzerrten geometrischen Streifenmuster wird von den Kameras mit 60 Bilder pro Sekunde erfasst. Um ein vollständiges 3D-Modell zu erhalten, wird die Kurbelwelle dreimal um jeweils 120 Grad gedreht „gescannt“. „Wir setzen keine hochauflösenden Kameras ein, da sie eine sehr große Datenmenge erzeugen und damit das Bildaufnahmetempo verlangsamen würden. Stattdessen erhalten wir bei einer Auflösung von 640 mal 480 Pixel nur 300 Kilobytes große Graustufenbilder, die wir über GigE schnell zur Verarbeitung an den PC senden können“, erklärt Bommart. Dass Videometric dabei auf die bewährten Kameras der TX-Serie setzt, liegt für ihn auf der Hand: „Die VGA-Auflösung kombiniert mit der hohen Bildrate und dem niedrigem Rauschen ist ideal für uns.“

Bildverarbeitung auf den hundertstel Millimeter genau

Für die Bildverarbeitung nutzt Videometric eine interne proprietäre leistungsstarke Software, die verschiedenste Algorithmen zur Digitalisierung, 3D-Verarbeitung, Volumenkalkulation und zum CAD-Vergleich beinhaltet. Für jeden Arm werden zuerst die aufgenommenen Bilder zu einer 3D-Punktwolke verarbeitet, die aus mehr als 1,6 Millionen Punkten bestehen kann. Abhängig von der Komplexität der Kurbelwelle werden insgesamt zwischen elf und 20 Millionen 3D-Punkte erfasst. Aus den 16 Punktwolken wird im anschließenden Verarbeitungsprozess ein engmaschiges, auf den hundertstel Millimeter genaues 3D-Modell der gesamten Kurbelwelle erstellt. Dieses wird mit dem in der Datenbank hinterlegten CAD/CAM-Herstellermodell verglichen, um eventuelle Formfehler zu lokalisieren. Die Abweichungen zwischen den beiden Modellen werden über die Berechnung des jeweiligen Trägheitsmomentes kenntlich gemacht und Materialüberschüsse oder -defizite farbig gekennzeichnet. Eine anschließende Simulation der notwendigen Nachbearbeitungsschritte ermittelt, ob eine Auswuchtung erfolgreich wäre. Dazu wird das Trägheitsmoment sowie die Masseverteilung nach einem Bearbeitungsschritt bestimmt. Bei einer positiven Rückmeldung wird die ideale Bearbeitungsachse an die weiterverarbeitende Maschine ausgegeben. Fehlerhafte Teile können so noch vor der Weiterbearbeitung und damit anfallenden Bearbeitungskosten ausgeschleust werden. Bommart ist überzeugt: „Unsere neue Methode führt also zu einer besseren Produktqualität und höheren Profitabilität. Unser aktueller Prototyp liefert einen hundertprozentigen 3D-Scan und eine Auswucht-Analyse der Kurbelwelle. Damit unterschreiten wir den aktuellen Industriestandard für den Einsatz in einer Produktionslinie – erreichen aber die gleiche Genauigkeit wie traditionelle Systeme.“ Da Kurbelwellen in ihrer Form recht komplex sein können, kann die Anzahl der Arme flexibel angepasst werden. Darüber hinaus ist der Einsatz der Methode auch für andere Arten von rotierenden Teilen denkbar. „Für neue Partnerschaften zur Weiterentwicklung des bestehenden Systems sind wir jederzeit offen“, so Bommart. bw

Anzeige

Das könnte Sie auch interessieren

Anzeige

Prüfung von KFZ-Bedienelementen

Es geht rund

Bei der Konstruktion von Sondermaschinen für die Prüfung von Bedienelementen im Fahrzeug setzt Schuhriemen Maschinenbau auf Kraft- und Drehmomentsensoren von Kistler. Die piezoelektrischen Komponenten bewähren sich bei der automatisierten...

mehr...

PCAP-Industrie-PC

Multitouch für raue Umgebungen

Noax präsentiert den neuen PCAP-Industrie-PC S19P. Der S19P ist robust und mit modernster Technologie ausgestattet. Das 19-Zoll-TFT-Display mit einem widerstandsfähigen Multitouch aus gehärtetem Sicherheitsglas ermöglicht eine intuitive,...

mehr...
Anzeige

Superkondensatoren

Scannt ohne Batterie

Dynamic Systems präsentiert den neuen Scanner von Honeywell Xenon 1902g-bf. Die kabellose Scanner-Technologie ersetzt die Batterie komplett durch den Einsatz von Superkondensatoren.

mehr...

Ölflex Connect

You better choose a system!

For machine tool manufacturers, lean processes are a vital part of staying competitive on the international market. Lapp shows how the sector can make connection technology more efficient and offers customers tailored, complete cable assemblies and...

mehr...

Perma MLP

Schmierstellen per App im Blick behalten

Um maximale Produktivität bei gleichbleibend hoher Qualität der Produkte zu garantieren, spielt die Instandhaltung, besonders die Schmierung, eine wichtige Rolle. Für den aktuellen Überblick über alle Schmierstellen und Wartungsarbeiten hat Perma...

mehr...